Aussetzen?
Aussetzen?
ok,ok, es war also verboten, wußte ich echt nicht, aber nun haben wir ein paar Kaulquappen zu Hause im Aquarium, um sie ein wenig zu beobachten. Extra für die Kinder als Anschauungsobjekte, um Naturverbundenheit zu fördern; natürlich am Ende zum feierlichen Aussetzen. Nun aber die Frage, auf die ich keine Antwort finden konnte : WO setze ich sie am besten aus, wenn das Ursprungsgewässer einfach zu weit weg ist??????? Siedeln sich die Tieren notgedrungen woanders an?????? Laichen sie dort dann später auch? Oder soll ich die kleinen Fröschchen lieber einige Wochen behalten, bis wir dort wieder hinkommen? Bin sicherlich nicht ganz unerfahren in Aquaristik/Terraristik, aber lieber wäre es mir, sie so bald wie möglich wieder der Natur zu überführen.
- Froschnetz
- Administrator
- Beiträge: 1742
- Registriert: Sa, 13.09.2003 19:36
- Geschlecht: männlich
- Wohnort: Muri BE - CH
- Kontaktdaten:
Ja, denn es geht darum, Arten nicht an einen Ort zu verschleppen wo sie gar nicht vorkommen. Sie sind dort entweder gar nicht lebensfähig, da dann die Population zu klein und isoliert ist oder aber sie können zu einem Problem werden wenn sie ansässige Populationen konkurrieren. Zudem ist nicht gesichert, dass ihnen der Ersatzlebensraum auch zusagt, auch wenn dieser dem ursprünglichen ganz ähnlich aussieht. Es gibt sehr viele Faktoren, die da mitspielen. Des weiteren schwächt die Entnahme von Kaulquappen/Laich die Population (auch wenn es nicht viele sind), daher sollten sie auch wieder dorthin zurück.
Jan Meyer
Froschnetz
Froschnetz
hellft uns
wir haben zwei Frösche im Teich und wir glauben sie paaren sich...was passiert wenn die da ihre eier hinlegen??kommen die dann immmer wieder und haben wir dann hier 1000 Frösche????????
Halöle,
Ja was soll den passieren wenn sie eier legen? Denn legen sie eben welche!
Ja die geschlüpften Frösche kommen dann jedes Jahr wieder (wenn sie erwachsen sind) um wieder ihre Eier hineinzulegen! Und das Spiel geht wieder von vorne los!
Aber 1000 Frösche wirst du dann nicht im Teich haben! Frösche haben sehr viele Fressfeinde so das ungefähr aus etwa 1000 Eiern nur 2 Erwachsene Frösche werden! Infortmationen zu den Feinden findest du hier!
https://www.froschnetz.ch/gefahr/index.htm
Lennart
Ja was soll den passieren wenn sie eier legen? Denn legen sie eben welche!
Ja die geschlüpften Frösche kommen dann jedes Jahr wieder (wenn sie erwachsen sind) um wieder ihre Eier hineinzulegen! Und das Spiel geht wieder von vorne los!
Aber 1000 Frösche wirst du dann nicht im Teich haben! Frösche haben sehr viele Fressfeinde so das ungefähr aus etwa 1000 Eiern nur 2 Erwachsene Frösche werden! Infortmationen zu den Feinden findest du hier!
https://www.froschnetz.ch/gefahr/index.htm
Lennart
Mfg
Lennart
Froschnetz-Mod
Lennart
Froschnetz-Mod
Wie wahrscheinlich ist es denn, dass eine handvoll kleine Erdkröten mit einer größeren Population konkurrieren kann, wenn man sie in deren Gebiet aussetzt? In Anbetracht der Tatsache, dass von der größeren Population genug jedes Jahr bei der Wanderung auf der Strecke bleiben, sollte das nun wirklich überhaupt nichts ausmachen.
Mehr Tiere da sind, desto weniger Futter gibt es. Also verschlechtert auch das Hinzusetzen einer Handvoll Erdkröten die Futtersituation für die, die bereits natürlicherweise da sind.
Aber das scheint mir nicht das zentrale Thema. Wer Tiere fängt, hat die Pflicht, gut für die Tiere zu sorgen. Dazu gehört halt eben auch, dass man die Tiere dort hin zurück bringt, wo man sie gefangen hat. Tiere sind nicht einfach Sachen, mit denen man machen kann, was man will.
Gruss,
Benedikt
Aber das scheint mir nicht das zentrale Thema. Wer Tiere fängt, hat die Pflicht, gut für die Tiere zu sorgen. Dazu gehört halt eben auch, dass man die Tiere dort hin zurück bringt, wo man sie gefangen hat. Tiere sind nicht einfach Sachen, mit denen man machen kann, was man will.
Gruss,
Benedikt
Sorry, ich glaub kaum, dass so kleine Viecher eine Futterkonkurrenz sind. Zumal nicht einmal abgeklärt ist, ob es in dem jeweiligen Gebiet einen Futtermangel gibt.
Ansonsten bin ich auch dafür, dass wenn man sich die Tiere zum Spaß holt, sie wieder an ihren ursprünglichen Ort zurückbringen sollte.
Wenn man einen Tümpel in der Nähe hat, der denn Ansprüchen der Tiere gerecht wird, ist es in meinen Augen auch kein Beinbruch sie dort unterzubringen. Das setzt allerdings voraus, dass man weiß, welche Bedürfnisse die Kleinen für ihren weiteren Lebensweg brauchen.
Ansonsten bin ich auch dafür, dass wenn man sich die Tiere zum Spaß holt, sie wieder an ihren ursprünglichen Ort zurückbringen sollte.
Wenn man einen Tümpel in der Nähe hat, der denn Ansprüchen der Tiere gerecht wird, ist es in meinen Augen auch kein Beinbruch sie dort unterzubringen. Das setzt allerdings voraus, dass man weiß, welche Bedürfnisse die Kleinen für ihren weiteren Lebensweg brauchen.
Die wenigen wissenschaftlichen Arbeiten, die es gibt, zeigen ähnliche Effekte auch bei Jungtieren und erwachsenen Tieren.
Wie die Menge der Kaulquappen gemessen wird ist meiner Meinung nach egal (Kaulquappen pro Liter, pro Quadratmeter, ...). Grösse des Tümpels scheint mir auch nicht wichtig, denn die Futtermenge ist entscheidend.
Gruss
Benedikt
Wie die Menge der Kaulquappen gemessen wird ist meiner Meinung nach egal (Kaulquappen pro Liter, pro Quadratmeter, ...). Grösse des Tümpels scheint mir auch nicht wichtig, denn die Futtermenge ist entscheidend.
Gruss
Benedikt
Hier wie gewünscht eine Angabe:
"Title: Multistage density dependence in an amphibian
Author(s): Altwegg R
Source: OECOLOGIA 136 (1): 46-50 JUN 2003
Abstract: Density dependence is the major process keeping the sizes of natural populations within bounds. In organisms with complex life cycles, the stage at which density dependence occurs and whether it occurs in one or several life stages have important consequences for the dynamics of their populations. I manipulated density of pool frogs (Rana lessonae) during the aquatic larval and the terrestrial juvenile stages and examined the effect on growth and survival until 1 year of age. High larval density, but not high juvenile density, led to smaller size at this age. Both larval and juvenile density led to reduced growth during the early juvenile stage, but the effect of the larval density appeared stronger than the effect of juvenile density. No density dependence in survival could be found. My results suggest that density dependence in both the larval and the terrestrial juvenile stage may play important roles in the regulation and dynamics of amphibian populations."
Hier ein Auszug aus den Methoden:
"Experimental procedures
I manipulated densities of tadpoles and terrestrial juveniles of R. lessonae. Two levels of density in each of these two stages were cross-classified, resulting in four treatments. The experimental units were 1,100-l fiberglass cattle tanks for the larvae, and 9-m2 field enclosures for the terrestrial juveniles (Pechmann 1995). Both stages grew up outdoors, under conditions that closely matched natural conditions. Low-density units received 25 individuals in both stages, while high-density units held 75 individuals. These densities span a wide range of the naturally observed tadpole densities (J. Van Buskirk, unpublished data) and lie within the range of terrestrial juvenile densities observed along the edge of ponds, where they spend the fall (personal observation). Each treatment combination was replicated three times, arrayed in three spatial blocks. The block structure was maintained in the larval and terrestrial part of the experiment, and all analyses were performed on mean values within field enclosures.
Cattle tanks were filled with tap water on 8 May 2000 and covered with shade cloth to prevent colonization by insects. On 9 May, I added to every tank 400 g of air-dried deciduous leaf litter and 7.5 g commercial rabbit chow and inoculated them with phytoplankton and zooplankton obtained from a natural pond. No additional food was provided throughout the experiment. I obtained tadpoles of R. lessonae from crosses between seven pairs of adult frogs caught on 16 May 2000 in a pond near Hellberg, Kanton Zürich, Switzerland. On 2 June, when the tadpoles had reached stage 25 (Gosner 1960), I randomly assigned groups of tadpoles to the experimental units in such a way that every replicate received the same proportion of individuals from all families, and raised them under standard conditions (see Semlitsch 1993 for a more detailed description of the artificial ponds).
When the first individual metamorphosed (stage 42, Gosner 1960) on 13 July, I started searching the tanks for metamorphs at least every second day. I removed metamorphs from the tanks, brought them back to the laboratory, and kept them singly in 1-l plastic tubs until they completed tail resorption (stage 46). Then I weighed them on an electronic balance (to ±1 mg), and measured body length, tibia length, and head width using calipers (to ±0.1 mm). I conducted a principal component analysis on the three morphological measures to obtain an overall measure of body size (PC1 explained 98% of the variance in the original data). Finally, I marked the young frogs individually with toe clips for later identification, and every 3–5 days I released batches of recently metamorphosed individuals into the field enclosures.
The fenced open-top field enclosures were situated in a forest near Kloten, Switzerland, where pool frogs are known to hibernate (Holenweg and Reyer 2000). All 12 enclosures were situated in the same clearing, and enclosures within the same block were adjacent to each other, separated by a single fence. These fences extended ca. 40 cm into the soil and consisted of fine-meshed steel wiring and robust shade cloth. A 15-cm-wide overhanging plastic strip on top of the fence was intended to keep the frogs from climbing across it. Each enclosure had a shallow-bottomed plastic bowl with a diameter of 65 cm that served as a small permanent pool. I sampled each field enclosure twice between 23 and 28 September 2000 and caught all survivors between 20 April and 30 May 2001 (eight capture occasions). Every encountered froglet was caught, identified, and measured as after metamorphosis. After the fall recaptures, I released them back into their enclosure the same day; during the spring captures of 2001, I removed them from the enclosures and released them at their pond of origin.
I analyzed the effect of larval and terrestrial juvenile density on average mass and size in, and survival until, spring 2001 by MANOVA and subsequent univariate ANOVAs using procedure GLM in SAS (SAS Institute Inc. 1996). I also examined the effect of the density treatments on early terrestrial survival and growth, because this is a time of rapid growth during the first year and appears to be important for winter survival (Altwegg and Reyer 2003). I was interested in whether fast growth in smaller froglets would ultimately eliminate the size differences with larger froglets. Therefore, I chose the absolute difference in mass and size between metamorphosis and September 2000 as a measure of growth. This measure accounted for possible density effects mediated by timing of and size at metamorphosis. I analyzed the treatment effects on mass change, size change and mean survival rates within experimental units by ANOVA. Survival until spring was arcsine transformed prior to analysis in order to meet the assumptions of the ANOVA. No transformation was necessary for the other response variables. Because it was not possible to catch every surviving individual in the fall sample, I used classical capture-mark-recapture methods in the program MARK to estimate survival for this time period (Lebreton et al. 1992; White and Burnham 1999). I estimated the survival rate separately for every field enclosure using the Cormack-Jolly-Seber model with time-dependent survival and recapture probabilities. To estimate the survival rates as exactly as possible, I included the effect of body size on the recapture probability in two field enclosures. The estimated recapture probabilities (probability of catching an individual at time t given that it is alive at time t) ranged from 40% to 86% for each of the two occasions, and therefore the froglets caught represent a good sample of all survivors at this time. I accounted for sampling uncertainty by weighting the survival estimates by the inverse of their variance in the ANOVA.
Unfortunately, two of the fences separating enclosures within a block developed leaks, and more than 20 froglets crossed these fences into the neighboring field enclosure. Thus, four experimental units had to be omitted from the analysis. Two of the omitted units held the treatment high larval/low juvenile density, one held low larval/high juvenile density, and one held high larval/high juvenile density. The rest of the fences had low leakage rates (4%, range 0–8, and 4.3%, range 2.5–8, emigration from low and high density enclosures). The loss of experimental units precluded the fitting of complicated models. Therefore, I first examined possible differences between blocks. The blocks were similar (all response variables P>0.35) and therefore omitted from the further analysis."
Gruss,
Benedikt
"Title: Multistage density dependence in an amphibian
Author(s): Altwegg R
Source: OECOLOGIA 136 (1): 46-50 JUN 2003
Abstract: Density dependence is the major process keeping the sizes of natural populations within bounds. In organisms with complex life cycles, the stage at which density dependence occurs and whether it occurs in one or several life stages have important consequences for the dynamics of their populations. I manipulated density of pool frogs (Rana lessonae) during the aquatic larval and the terrestrial juvenile stages and examined the effect on growth and survival until 1 year of age. High larval density, but not high juvenile density, led to smaller size at this age. Both larval and juvenile density led to reduced growth during the early juvenile stage, but the effect of the larval density appeared stronger than the effect of juvenile density. No density dependence in survival could be found. My results suggest that density dependence in both the larval and the terrestrial juvenile stage may play important roles in the regulation and dynamics of amphibian populations."
Hier ein Auszug aus den Methoden:
"Experimental procedures
I manipulated densities of tadpoles and terrestrial juveniles of R. lessonae. Two levels of density in each of these two stages were cross-classified, resulting in four treatments. The experimental units were 1,100-l fiberglass cattle tanks for the larvae, and 9-m2 field enclosures for the terrestrial juveniles (Pechmann 1995). Both stages grew up outdoors, under conditions that closely matched natural conditions. Low-density units received 25 individuals in both stages, while high-density units held 75 individuals. These densities span a wide range of the naturally observed tadpole densities (J. Van Buskirk, unpublished data) and lie within the range of terrestrial juvenile densities observed along the edge of ponds, where they spend the fall (personal observation). Each treatment combination was replicated three times, arrayed in three spatial blocks. The block structure was maintained in the larval and terrestrial part of the experiment, and all analyses were performed on mean values within field enclosures.
Cattle tanks were filled with tap water on 8 May 2000 and covered with shade cloth to prevent colonization by insects. On 9 May, I added to every tank 400 g of air-dried deciduous leaf litter and 7.5 g commercial rabbit chow and inoculated them with phytoplankton and zooplankton obtained from a natural pond. No additional food was provided throughout the experiment. I obtained tadpoles of R. lessonae from crosses between seven pairs of adult frogs caught on 16 May 2000 in a pond near Hellberg, Kanton Zürich, Switzerland. On 2 June, when the tadpoles had reached stage 25 (Gosner 1960), I randomly assigned groups of tadpoles to the experimental units in such a way that every replicate received the same proportion of individuals from all families, and raised them under standard conditions (see Semlitsch 1993 for a more detailed description of the artificial ponds).
When the first individual metamorphosed (stage 42, Gosner 1960) on 13 July, I started searching the tanks for metamorphs at least every second day. I removed metamorphs from the tanks, brought them back to the laboratory, and kept them singly in 1-l plastic tubs until they completed tail resorption (stage 46). Then I weighed them on an electronic balance (to ±1 mg), and measured body length, tibia length, and head width using calipers (to ±0.1 mm). I conducted a principal component analysis on the three morphological measures to obtain an overall measure of body size (PC1 explained 98% of the variance in the original data). Finally, I marked the young frogs individually with toe clips for later identification, and every 3–5 days I released batches of recently metamorphosed individuals into the field enclosures.
The fenced open-top field enclosures were situated in a forest near Kloten, Switzerland, where pool frogs are known to hibernate (Holenweg and Reyer 2000). All 12 enclosures were situated in the same clearing, and enclosures within the same block were adjacent to each other, separated by a single fence. These fences extended ca. 40 cm into the soil and consisted of fine-meshed steel wiring and robust shade cloth. A 15-cm-wide overhanging plastic strip on top of the fence was intended to keep the frogs from climbing across it. Each enclosure had a shallow-bottomed plastic bowl with a diameter of 65 cm that served as a small permanent pool. I sampled each field enclosure twice between 23 and 28 September 2000 and caught all survivors between 20 April and 30 May 2001 (eight capture occasions). Every encountered froglet was caught, identified, and measured as after metamorphosis. After the fall recaptures, I released them back into their enclosure the same day; during the spring captures of 2001, I removed them from the enclosures and released them at their pond of origin.
I analyzed the effect of larval and terrestrial juvenile density on average mass and size in, and survival until, spring 2001 by MANOVA and subsequent univariate ANOVAs using procedure GLM in SAS (SAS Institute Inc. 1996). I also examined the effect of the density treatments on early terrestrial survival and growth, because this is a time of rapid growth during the first year and appears to be important for winter survival (Altwegg and Reyer 2003). I was interested in whether fast growth in smaller froglets would ultimately eliminate the size differences with larger froglets. Therefore, I chose the absolute difference in mass and size between metamorphosis and September 2000 as a measure of growth. This measure accounted for possible density effects mediated by timing of and size at metamorphosis. I analyzed the treatment effects on mass change, size change and mean survival rates within experimental units by ANOVA. Survival until spring was arcsine transformed prior to analysis in order to meet the assumptions of the ANOVA. No transformation was necessary for the other response variables. Because it was not possible to catch every surviving individual in the fall sample, I used classical capture-mark-recapture methods in the program MARK to estimate survival for this time period (Lebreton et al. 1992; White and Burnham 1999). I estimated the survival rate separately for every field enclosure using the Cormack-Jolly-Seber model with time-dependent survival and recapture probabilities. To estimate the survival rates as exactly as possible, I included the effect of body size on the recapture probability in two field enclosures. The estimated recapture probabilities (probability of catching an individual at time t given that it is alive at time t) ranged from 40% to 86% for each of the two occasions, and therefore the froglets caught represent a good sample of all survivors at this time. I accounted for sampling uncertainty by weighting the survival estimates by the inverse of their variance in the ANOVA.
Unfortunately, two of the fences separating enclosures within a block developed leaks, and more than 20 froglets crossed these fences into the neighboring field enclosure. Thus, four experimental units had to be omitted from the analysis. Two of the omitted units held the treatment high larval/low juvenile density, one held low larval/high juvenile density, and one held high larval/high juvenile density. The rest of the fences had low leakage rates (4%, range 0–8, and 4.3%, range 2.5–8, emigration from low and high density enclosures). The loss of experimental units precluded the fitting of complicated models. Therefore, I first examined possible differences between blocks. The blocks were similar (all response variables P>0.35) and therefore omitted from the further analysis."
Gruss,
Benedikt